بازدید امروز : 44
بازدید دیروز : 17
کل بازدید : 275492
کل یادداشتها ها : 254
تاریخچه
در سال 1802 پتروف (V.P.Petrof) کشف کرد که اگر دو تکه زغال چوب را به قطب های باتری بزرگی وصل کنیم و آنها را به هم تماس دهیم و سپس کمی از هم جدا کنیم شعله روشنی بین دو تکه زغال دیده می شود. و انتهای آنها که از شدت گرما سفید شده است نور خیره کننده ای گسیل می دارد. قوس الکتریکی هفت سال بعد دیوی (H.Davy) فیزیکدان انگلیسی این پدیده را مشاهده نمود و پیشنهاد کرد که این پدیده به احترام ولتا قوس ولتا نامیده شود.
آزمایش ساده
اگر بخواهیم در یک روش ساده ای ایجاد قوس الکتریکی را نشان دهیم باید دو تکه کربن را روی گیره قابل تنظیم سوار نمود (بهتر است که به جای زغال چوب معمولی میله خاصی که از کربن قوس ساخته می شود و با فشار دادن مخلوط گرافیت ، کربن سیاه و مواد چسبنده به وجود می آیند، استفاده شود).
چشمه جریان می تواند برق شهر هم باشد برای اجتناب ازاینکه در لحظه تماس تکه های کربن مدار کوتاه ایجاد شود باید رئوستایی به طور متوالی به قوس وصل شود.
معمولا برق شهر با جریان متناوب تغذیه می شود. ولی در صورتی که جریان مستقیم از آن عبور کند قوس پایدارتر است به طوری که یکی از الکترودها همیشه مثبت «آند)و دیگری همواره منفی «کاتد)است.
ماهیت قوس الکتریکی
در قوس الکتریکی الکترودها در اثر حرارت سفید رنگ می شود. ستونی از گاز ملتهب رسانای خوب الکتریکی بین الکترودها وجود دارد. در قوس معمولی این ستون نوری بسیار کمتر از نور تکه های کربن سفید شده از آزمایشهای مربوط به گرما گسیل می کنند. چون الکترود مثبت دمایش از الکترود منفی بیشتر است زود تر از بین می رود. در نتیجه تصعید شدید کربن صورت گرفته و در آن الکترود (الکترود مثبت) فرورفتگی به وجود می آید که به دهانه مثبت معروف است و داغ ترین نقطه الکترودهاست.
دمای دهانه در هوا و در فشار جو به 4000 درجه سانتیگراد می رسد. در لامپ های قوسی سازوکارهای منظم و خود کار خاصی برای نزدیک کردن تکه های کربن با سرعت یکنواخت وقتی با سوختن از بین می روند، مورد استفاده قرار می گیرند. برای اینکه سایش و خوردگی الکترود مثبت به خاطر دمای بالایش بیشتر است،برای همین همیشه الکترود کربن مثبت کلفت تر از الکترود منفی اختیار می شود.
دماهای بالا در قوس الکتریکی
قوس الکتریکی می تواند بین الکترودهای فلزی ساخته شده از آهن ، مس و غیره نیز بگیرد. در این حالت الکترودها به میزان زیادی ذوب و تبخیر می شوند و این عمل به مقدار زیادی آزمایشهای مربوط به گرما احتیاج دارد. به این دلیل دمای مرکز الکترود فلزی معمولا کمتر از دمای الکترود کربنی است (2000 تا 2500 درجه سانتیگراد).
قوسی که بین الکترودهای کربن در گاز فشرده ای قرار می گیرد (حدود 20atm) بالا رفتن دمای مرکز مثبت تا 5900 درجه سانتیگراد یعنی دما روی سطح خورشید را ممکن ساخته است. معلوم شده است که کربن در این حالت ذوب می شود. دمای باز هم بالاتری را می توان در ستونی از گاز و بخاری که از آن تخلیه الکتریکی می گذرد، به دست آورد.
بمباران شدید این گاز و بخار با الکترون ها و یون هایی که با میدان الکتریکی قوس شتاب گرفته اند دمای ستون گاز را 6000 تا 7000 درجه سانتیگراد می رساند. به این دلیل تقریبا تمام مواد شناخته شده در ستون قوس الکتریکی ذوب و تبخیر می شوند. و بسیاری از واکنش های شیمیایی که در دماهای پایین انجام شدنی نیستند، با قوس الکتریکی امکان پذیر می شوند. مثلا میله های چینی دیر گداز در شعله قوس به سهولت ذوب می شود.
چگونگی ایجاد تخلیه قوس الکتریکی
برای ایجاد تخلیه قوس الکتریکی به ولتاژ زیادی احتیاج نیست با ولتاژ 40 تا 45 ولت بین الکترود ها می توان قوس را به وجود آورد. از طرف دیگر جریان داخل قوس زیاد است. مثلا حتی در قوس کوچک جریان به 5 آمپر می رسد، در حالیکه در قوس های بزرگ که در مقیاس صنعتی به کار می روند جریان به صدها آمپر بالغ می شود. این به این معنا ست که مقاومت قوس پایین است و از این رو ستون گاز تابان رسانای الکتریکی خوبی است.
یونیزاسیون گاز با انرژی قوس الکتریکی
یونش شدید گاز با قوس الکتریکی به آن دلیل امکان پذیر است که کاتد قوس الکتریکی تعداد زیادی الکترون گسیل می داد. این الکترون ها با برخورد با گاز داخل شکاف تخلیه گازی آن را یونیزه می کنند. گسیل الکترونی شدید از کاتد از آنجا ممکن می شود که خود کاتد تا دمای بسیار بالایی گرم می شود (بسته به ماده از 2200 تا 3500). وقتی که الکترودهای قوس در ابتدا تماس داده شوند تقریباً تمام گرمای ژول که از الکترود ها می گذرد در ناحیه تماس که مقاومت بسیار دارد آزاد می شود.
به این دلیل انتهای الکترودها به شدت گرم می شوند که برای گیراندن قوس به هنگام جداکردن آنها کافی است آن وقت کاتد قوس توسط جریانی که از قوس می گذرد، در حالت التهاب می ماند. در این فرایند بمباران کاتد توسط یون هایی که به آن برخورد می کند نقش اصلی را ایفا می کند.
مشخصه جریان ولتاژ قوس الکتریکی
یعنی بستگی جریان الکتریکی در قوس الکتریکی به ولتاژ بین الکترودها ، ویژگی خاصی دارد. در فلزات و الکترولیت ها جریان متناوب با ولتاژ افزایش می یابد «قانون اهم). در صورتیکه برای رسانش القایی گازها جریان ابتدا با ولتاژ زیاد می شود، سپس اشباع شده و مستقل از ولتاژ است.
بنابر این افزایش جریان در تخلیه قوسی به اندازه مقاومت در شکاف بین الکترودها و ولتاژ بین آنها منجر می شود. برای اینکه تابانی قوس پایدار بماند رئوستا یا مقاومت الکتریکی قوی دیگری را باید به طور متوالی به آن بست.
از مهندس برق گرایش مخابرات چه انتظاراتی وجود دارد و دانشجویان در مدت کارشناسی چه چیزهایی یاد می گیرند؟
جایگاه این رشته در آینده کجاست و مزایای رشته برق چیست؟
محیط کار مهندس برق چگونه است؟
تعریف مهندسی برق مخابرات همان است که در بالا گفته شد . شاید بتوان این گرایش از برق را محض ترین رشته مهندسی برق نامید یعنی کسانی ، در این رشته می توانند موفق شوند که به ریاضی و فیزیک علاقه ویژه ای دارند . از مهندس برق گرایش مخابرات چه انتظاراتی وجود دارد و دانشجویان در مدت کارشناسی چه چیزهایی یاد می گیرند ؟ یک فارغ التحصیل برق _ مخابرات توانایی های متوسط برق را دارد و در هر جایی که صنعت برق چه درباره انتقال ، تولید ، توزیع و مصرف انرژی وجود دارد می توانند کار کنند و در زمینه اطلاعات هم می توانند کار کنند مثلاًً یک modem طراحی کنند که بین دو نقطه ارتباط دیجیتالی برقرار کنند. جایگاه این رشته در آینده کجاست و مزایای رشته برق چیست ؟ بطور کلی رشته هایی مثل رشته های برق و کامپیوتر که به ابزاری بجز کامپیوتر احتیاجی ندارند یعنی سخت افزار کارشان ارزان است در کشورهای در حال توسعه مثل کشورمان ایران ، جای رشد زیادی دارند که در کشور هند شاهد رشد زیاد این صنعت هستیم . با توجه به اینکه تمامی روندهای برقی به سمت نرم افزاری شدن پیش می رود و پیاده سازی ها به سمت کامپیوتری شدن پیش می رود آینده خوب و روشنی برای این رشته متصور است مثلاًً در حال حاضر برای طراحی یک فیلتر (فیلتر یعنی فرکانسی را از بین فرکانسهای زیادی انتخاب کنیم ) از کامپیوتر استفاده می شود و سواد یک مهندس برق به برنامه ای تبدیل می شود که این برنامه را یک مهندس برق می تواند بنویسد ویا حداقل الگوریتم برنامه مورد نظر را یک مهندس برق طراحی می کند . محیط کار مهندس برق چگونه است ؟ محیط کار این رشته ، محیطی تمییز است یعنی آلودگی در آن وجود ندارد و معمولاًً خارج شهر نیست و محیط کار یک مهندس برق در داخل شهر است و محیط فنی برق، شبیه یک محیط اداری است ولی اداری نیست یعنی اکثر مهندسین برق در اتاقهایی کار می کنند که با ابزارهای تمیز سروکار دارند بجز مهندسین قدرت که در محیطهای کارخانه ای کار می کنند .
چشم الکترونیکی دستگاهی است دقیق،ظریف و حساس برای کنترل حرکت و جابجایی اشیا یا افراد توسط نور. کافیست دستگاه را در محل مورد نظر نصب کنید و ترتیبی دهید که نور به مقدار لازم به سلول حساس دستگاه بتابد. به محض آنکه فرد یا شیئی از مقابل دستگاه عبور کند یا جابجا شود، بطوری که تابش نور به سلول حساس کاهش یابد و یا متوقف شود ، دستگاه فورا واکنش نشان میدهد و صدای بوق قوی از بلندگو پخش میشود.این دستگاه با ولتاژ 6 ولت کار میکند و مصرف آن در حالت بی کاری نزدیک به صفر است. بنابراین حتی اگر باتری خشک به آن وصل کنید ، مدتها دوام می آورد. ضمنا یک پتانسیومتر تنظیم حساسیت روی فیبر تعبیه شده است که به کمک آن میتوانید دستگاه را برای استفاده در شرایط نوری مختلف به دقت تنظیم نمایید. دستگاه چشم الکترونیک کاربردهای گوناگونی دارد که از جمله میتوان به کاربرد آن به عنوان دزدگیر در موسسات و منازل و اتومبیل ها اشاره کرد. ضمنا برای کنترل مسیر ها جهت آگاهی از ورود و خروج افراد نیز به کار می رود.
نخستین بخش مدار را یک مولتی ویبراتور مرکب از ترانزیستورهای Tr2 و Tr3 تشکیل میدهد. مقدار خازنهای C1 و C2 طوری انتخاب شده است که سیگنالهای صوتی ثابتی با فرکانس حدود یک کلیو سیکل ایجاد میکند. این سیگنالها در پایه کلکتور ترانزیستور Tr3 قابل دریافت است و اگر یک گوشی کریستالی به پایه مذبور وصل کنید، سیگنالها را به صورت صدای سوت میشنوید. دومین بخش مدار، یک آمپلیفایر صوتی دو ترانزیستوری مرکب از ترانزیستورهای Tr4 و Tr5 است که به صورت مستقیم به یکدیگر وصل شده اند. ترانزیستور Tr4 که یک ترانزیستور تیپ مثبت PNP است، سیگنالهای صوتی را از طریق خازن C3 دریافت میکند و پس از تقویت سیگنالها، آنها را برای تقویت نهایی ( تقویت قدرت) به ترانزیستور Tr5 میدهد. پایه B ترانزیستور Tr1 از طریق سلول فوتورزیستانس Cds به ولتاژ مثبت وصل شده است و در حالتی که نور به صفحه Cds بتابد، مقاومت آن کاهش یافته ولتاژ مثبت قابل توجهی به پایه B میرسد و ترانزیستور را در حالت خاموشی نگهمیدارد که در این حالت ولتاژ تغذیه مولتی ویبراتور قطع است و کار نمیکند و لذا هیچ صدایی از بلندگو پخش نمیشود. اما همینکه مانعی بر سر راه تابش نور به Cds ایجاد شود، مقاومت آن افزایش می یابد و ولتاژ مثبت پایه B کاسته شده و در عوض پایه B از طریق پتانسیومتر Pot و مقاومت R1 ولتاژ منفی دریافت میکند که در نتیجه مدار مولتی ویبراتور به کار می افتد و صدای بوق از بلندگو پخش میشود. با تنظیم پتانسیومتر( مقاومت متغییر) میتوان ولتاژ پایه B ترانزیستور Tr1 را برای شرایط نوری مختلف به دقت تنظیم نمود
برقگیر از وسایل ایمنی میباشد که برای هدایت موجهای ولتاژ ضربهای به زمین و جلوگیری از ورود آنها به ایستگاههای انتقال و توزیع نیرو بکار میرود و معمولاً در انتهای خط انتقال و در ورودی ترانسها نصب میشود. ولتاژ شکست الکتریکی یک برقگیر بایستی کمتر از ولتاژ شکست الکتریکی ایزولاسیون لایه تجهیزات نصب شده در پست باشد. انواع برقـگیـر
1) برقگیر میـلهای
2) برقگیر بـا فاصله هوایی
3) برقگیر بـا مقاومت غیر خطی
4) برقگیر بدون فاصله هوایی
5) برقگیر خـازنـی
6) برقگیر فیوزی
برقگیـر میـله ای
یکی از سادهترین و ارزانترین برقگیرها که از اولین برقگیرها میباشند برقگیر میلهای هستند که با وجود قدیمی بودن امروزه نیز کاربردهای زیادی دارد . این برقگیر عبارت است از دو میله نوکتیز که یکی در قسمت برقدار نصب شده و دیگری در زیر ایزولاتور و یا بدنه نصب و به زمین اتصال مییابد فاصله دو نوک متناسب با ولتاژ و شرایط و زمان اعمال ولتاژ روی سیستم قابل تنظیم است . تنظیم این فاصله طوری که در مقابل ولتاژ حداکثر سیستم پایدار بوده و فقط در برابر ولتاژهای زیاد تخلیه الکتریکی صورت میگیرد . البته تنظیم برقگیر از حالت ایدهآل دور بوده و میتوان گفت در یک باند ولتاژ عمل میکند و مشخصه عملکرد دقیقی را برای آن نمیتوان تصور کرد.
برقگیـر با فاصلة هوایی
نوع دیگری از برقگیرها که کاربرد بسیاری در پستهای فشار قوی دارد ؛ برقگیر از نوع شاخکی می باشد . این نوع برقگیرها ساده ترین نوع برقگیر می باشند که به جرقه گیر (برقگیر با فاصله هوایی ) معروف هستند به مراتب از آنها در محلهای اتصال مقره به هادی یا اطراف بوشینگهای ترانسهای توزیع دیده می شود.
همانطوریکه که می دانیم برقگیرها باید در برابر ولتاژ نامی شبکه مانند یک کلید باز رفتار کنند و در برابر ولتاژهای بیشتر از ولتاژ نامی شبکه مانند یک کلید بسته رفتار کنند.
در این نوع برقگیرها (برقگیر با فاصله هوایی) اگر ولتاژ بالا رود؛ بین شاخکها قوس برقرار شده و انرژی صائقه را به زمین منتقل شده و این امر باعث می شود که تجهیز از بین نرود.
موارد استفاده برقگیـر با فاصلة هوایی
امروزه از این نوع برقگیرها فقط در موارد خاصی استفاده می شود که عبارتنداز:
1) برسر بوشینگهای ترانسها (جهت حفاظت سیم پیچهای ترانس)
2) در خطوط انتقال فشار قوی که به شکل حلقه ای هستند که هم نقش برقگیر را بازی می کنند و هم نقش حلقة کرونا را بازی می کنند.
برقگیـر با مقاومت غیر خطی
این نوع برقگیر از یک یا چند خازن سری همراه با یک یا چند مقاومت غیر خطی تشکیل شده است، این خازنها که اصولا ً بصورت فواصل هوایی میباشد در حالت کار عادی سیستم از عبور جریان الکتریکی به داخل برقگیر جلوگیری میکنند. چنانچه ولتاژ سیستم به عللی بالا رود، فواصل هوایی بین خازنها هادی شده و جریان الکتریکی عبور میکند عبور جریان از مقاومت غیر خطی میزان افت و ولتاژ دو سر برقگیر را مشخص میکند .
فواصل هوایی موجود در برقگیر باید طوری باشد که در مقابل حداکثر ولتاژ کار سیستم مقاوم بوده ولی اگر به عللی اضافه ولتاژ اعمال شده اتصال کوتاه شود پس از برقراری شرایط عادی بتواند جریان را قطع کند که این کار توسط مقاومت های غیر خطی انجام میگیرد . مجموعه قسمت خازنها و مقاومت غیر خطی در داخل یک ایزولاتور ساخته شده از مواد عایقی قرار میگیرند . انتخاب چند خازن در برقگیر بجای یک خازن به این دلیل صورت میگیرد که استقامت برقگیر در مقابل ولتاژهای برگشتی زیاد گردد برای اینکه تقسیم ولتاژهای روی خازنها بطور مساوی انجام گیرد. یک سری خازن و مقاومت موازی در دو سر فاصلههای هوایی قرار میدهند و این کار را درجهبندی ولتاژ میگوئیم، یعنی یکنواخت نمودن توزیع ولتاژ در روی خازنهای متوالی .
همانطور که در شکل دیده می شود برقگیرها در قسمت فوقانی خود مجهز به یک وسیله حلقه ای شکل هستند که این وسیله به حلقه کرونا یا کروناگیر معروف می باشد .
همانطور که می دانیم پدیدة کرونا تخلیه الکتریکی ناقص در یک میدان غیر یکنواخت می باشد . در پستهای فشار قوی این پدیده بالاخص در محل های اتصال هادیها به تجهیزات دیده می شود .
لذا برای برطرف کردن این عیب باید میدان را در این نواحی یکنواخت کنند تا اثرات مخرب کرونا کمتر گردد . برقگیرهایی که امروز در پستها بکار می روند از نوع ZNO می باشند که در داخل آنها قرص هایی از جنس اکسید رویZNO می باشد که بسته به سطح ولتاژ شبکه تعداد آنها متغیر است .
برقگیـر با مقاومت غیر خطی
همانطور که می دانیم این برقگیرها باید همانند یک مقاومت غیر خطی عمل کنند یعنی در برابر ولتاژ نامی شبکه امپدانس بالایی را از خود نشان دهند و در برابر ولتاژهای بالاتر از ولتاژ نامی شبکه امپدانس کمی را از خود نشان دهند تا تخلیه صورت گیرد . لذا قرص های اکسید روی بکار رفته در برقگیرهای امروزی در واقع نقش مقاومت غیر خطی را بازی می کنند که دارای جریان نشتی بسیار کمی می باشند (در حالتNormal شبکه) لذا به روی این قرص ها ولتاژ تقسیم می گردد.
حال اگر میدان غیر یکنواخت باشد قاعدتاً تقسیم ولتاژ بر روی قرص ها یکسان نخواهد بود؛ در این صورت یک قرص و به خصوص قرص های بالایی ولتاژ بالاتری را از سایر قرص ها متحمل می شوند و زودتر آسیب می بینند و این امر سبب عملکرد نادرست برقگیر می شود لذا اگر بتوانند به طریقی میدان را یکنواخت کنند ( به حالت یکنواخت نزدیک کنند ) تقسیم ولتاژ بین قرصها شکل متعادل تری را به خود می گیرد و قاعدتاً عمر قرصها افزایش می یابد و عملکرد برقگیرها بهتر میگردد.
برای این کار از وسیله ای به نام کروناگیر یا حلقه کرونا استفاده می کنند؛ که در حقیقت هم میدان را به سمت یکنواختی سوق می دهد و هم تقسیم ولتاژ را به روی قرص ها به حالت متعادلی نزدیک می نماید.
برقگیـر بدون فاصلة هوایی
یک نوع برقگیر بدون فاصله هوایی امروزه بکار میرود که خازنهای سری آن از قطعات اکسید روی میباشد که این قطعات بصورت قرصهایی با اندازههای مختلف ساخته شده و روی هم قرار میگیرند. این برقگیرها از نظر ساخت سادهتر بوده و دارای حجم کمتری نیز میباشد. این برقگیرها میتوانند در ولتاژهای پائینتر عمل کنند بنابراین سطح ولتاژ حفاظت تجهیزات را نیز میتوان پائینتر آورد و در نتیجه در هزینهها صرفهجویی نمود و جریان نشتی در این نوع برقگیرها کمتر است یا تقریباً صفر است.
برقگیـر خـازنی
این نوع برقگیر برای ولتاژهای فشار ضعیف استفاده میشود که انرژی اعمال شده حاصل از موج ولتاژ در خازن ذخیره میشود.
برقگیـر فیـوزی
این نوع برقگیر نیز طوری ساخته میشود که در مقابل اضافه ولتاژ که سبب عبور جریان زیادی از برقگیر بشود میسوزد و جرقه داخل آن توسط گاز یا مواد نسوز درون آن خاموش میشود و اکثراً بعنوان حفاظت ثانویه بکار میرود.
محل نصب برقگیـر
برقگیر باید در ورودی پستهای ترانس قبل از کلیه تجهیزات و تا حد ممکن نزدیک به آنها نصب گردد. علاوه بر برقگیری که در ورودی پستهای ترانس نصب میشود قبل از تجهیزات مهم مانند ترانسفورماتورهای قدرت نیز جداگانه برقگیر نصب میشود. معمولاً در مسیر برقگیر به زمین یک شماره انداز قرار میدهند که میتواند تعداد دفعات تخلیه موجهای ولتاژ ضربهای بر روی برقگیر را ثبت نماید.
آزمایش مقره های خطوط هوایی به طور کلی سه دسته آزمایش بر روی مقره ها انجام می گیرد : 1. Type Test : که فقط روی سه عدد مقره انجام می گیرد و صرفاً به خاطر بررسی مشخصات الکتریکی یک مقره است که اساساً بستگی به شکل مقره و جنس و ابعاد آن به طور کلی به طراحی مقره بستگی دارد. این آزمایش ها را فقط یک بار برای تأیید صحت طراحی مقره ها و مقایسه نتایج حاصل با مقادیر تعیین شده توسط استانداردها انجام می دهند. به این آزمایش ها ، آزمایش های تخلیه یا آزمایش های جرقه نیز می گویند (Flashover Test). 2. Sample Test (آزمایش های نمونه) : این آزمایش ها بر روی تعدادی از مقره ها که به صورت کاملاً اتفاقی انتخاب می شوند ، انجام می گیرد و به منظور بررسی مشخصات مقره و کیفیت موارد مورد استفاده در آن ها است و در حقیقت معیاری برای پذیرش کیفیت مقره های تولیدی یک تولید کننده است. 3. Routine Test (آزمایش های سری) : این آزمایش ها بر روی تک تک تمام مقره های تولید شده در خط تولید شده در خط انجام می گیرد و به منظور خارج شدن مقره هایی که احتمالاً در جریان ساختن آن اشکالی به وجود آمده می باشد. بدین طریق مقره های کاملاً معیوب از خط تولید خارج می شوند. Type Test بر طبق استاندارد بین المللی IEC گروه اول آزمایش ها شامل آزمایش های زیر است : 1. آزمایش استقامت در برابر ولتاژ ضربه ای ، صاعقه در هوای خشک : این آزمایش در دو حالت انجام می شود : الف) با موج ضربه ای مقاوم : برای هر مقره ای حداکثر دامنه موج ضربه ای استاندارد (که برای امواج صاعقه مدل می شود) باعث ایجاد جرقه بر روی سطح مقره نمی شود را استاندارد مشخص کرده است. البته مقادیر برای شرایط جوی استاندارد داده می شود. حالا اگر شرایط آزمایش از نظر فشار و درجه حرارت و میزان رطوبت متفاوت با شرایط استاندارد باشد ، باید مقادیر فوق را تصحیح نمود. در این آزمایش 15 بار موج ضربه ای استاندارد 1.2/50 μsec به مقره به دفعات متوالی اعمال می شود. فاصله زمانی بین هر بار باید به اندازه کافی باشد تا اثر قبلی از بین رود. دامنه موج ضربه ای همان مقدار مشخص شده در استانداردها با ضریب تصحیح مربوطه است. اگر این آزمایش در هیچ دفعه ای جرقه سطحی روی مقره زده نشود یا تعداد دفعات جرقه سطحی کمتر از 2 بار باشد و سطح مقره ها آسیب کلی نبیند. این آزمایش جواب مثبت داده است. البته اثر جزئی جرقه روی سطح مقره (مثل خش انداختن) مجاز است. ب) با موج ضربه ای با احتمال 50 % جرقه سطحی : دامنه موج ضربه ای استاندارد که با احتمال 50% بر روی سطح مقره جرقه زده می شود در استانداردها مشخص شده است. حالا برای یک مقره مورد آزمایش ، یک موج ضربه ای استاندارد با دامنه Vk نزدیک به سطح تقریبی دامنه ولتاژ جرقه 50% انتخاب می شود. همچنین یک دامنه متغیر ولتاژ ΔV که تقریباً 3% از ولتاژ V است ، انتخاب می گردد. حالا یک موج ضربه ای استاندارد با دامنه VK به مقره اعمال می شود. اگر این موج سبب بروز جرقه سطحی روی مقره نگردید ، دامنه موج ضربه ای بعدی باید Vk + ΔV انتخاب شود که اگر حدود 30 بار و چون ممکن است Vk اولیه خیلی کوچک یا خیلی بزرگ انتخاب شده باشد ، 1 تا 9 آزمایش اول را 30 بار محسوب نمی کنند. اگر هر ولتاژ UV در این آزمایش nV بار تکرار شده باشد ، ولتاژ جرقه سطحی 50% از رابطه زیر بدست می آید : ∑nVUV مقره به شرطی این قسمت را جواب می دهد که 50%U بدست آمده از رابطه بالا برای آن از 04/1 برابر ولتاژ جرقه مقاوم آن کمتر نباشد و مقره ها در اثر جرقه ای سطحی روی آن ها آسیب کلی نبیند. 2. آزمایش استقامت در برابر ولتاژ ضربه ای سوئچینگ در هوای مرطوب : موج ضربه ای برای مدل کردن سوئچینگ ، یک موج ضربه ای 250/2500μsec است که با موج ضربه ای صاعقه متفاوت است و زمان رسیدن به یک مقدار یک و نیم موج پشت آن خیلی بیشتر از موج ضربه ای صاعقه می باشد. در این حالت مقره تحت آزمایش ، زیر بارش یک باران مصنوعی قرار می گیرد. شدت بارش باران باید حداقل بین 1 میلیمتر بر دقیقه تا 2 میلیمتر بر دقیقه باشد و به صورت مورب با زاویه °45 بارش نماید. درجه حرارت محیط هم بین c°15- تا c°15 باشد و مقاومت مخصوص آن در c°20 باید – m Ω 15±100 باشد. مقره باید به مدت 15 دقیقه قبل از شروع تست تحت بارش این باران قرار گیرد ، البته این زمان می تواند کمتر هم باشد ، مخصوصاً زمانی که تست های متوالی انجام می گیرد. در این جا نیز این آزمایش در دو حالت مختلف می تواند انجام بگیرد : الف) با موج ضربه ای با احتمال 50% جرقه سطحی : طریقه آزمایش مانند حالت هوای خشک است (با موج ضربه ای صاعقه) ولی دامنه موج ضربه ای 50% بدست آمده از رابطه نباید کمتر از 085/1 برابر دامنه موج ضربه ای مقاوم تعیین شده در استاندارد برای موج ضربه ای مقاوم تعیین شده در استاندارد مربوط به شرایط جوی استاندارد است که برای شرایط آزمایشگاهی باید در ضرایب تصحیحی ، اصلاح شود. ب) با موج ضربه ای مقاوم : این آزمایش نیز با دامنه موج ضربه ای مقاوم تعیین شده در استاندارد برای 15 بار تکرار می شود و اگر تعداد دفعاتی که جرقه سطحی روی مقره زده می شود بیشتر از 2 بار نباشد این ازمایش جواب مثبت داده است. در این آزمایش نیز نباید سطح مقره ها آسیب کلی ببیند (اثرهای جزئی روی سطح مقره قابل پذیش است). 3. آزمایش استقامت در برابر ولتاژ با فرکانس صنعتی در هوای مرطوب Wet Power – Freuency Test دراین لحظه مقره نیز تحت آزمایش در یک شرایط باران مصنوعیمانند حالت قبل قرار می گیرد. متناسب با شرایط جوی زمان آزمایش از نظر فشار و درجه حرارت ، مقدار ولتاژ قابل استفاده مقره را بر اساس مقدار تعیین شده آن در استانداردها بدست می آوریم (با استفاده از ضرایب تصحیح). سپس یک ولتاژ در حدود 75% ولتاژ فوق را به مقره اعمال می کنیم و سپس به تدریج و به آرامی با یک شیب در حدود 2% ولتاژ فوق بر ثانیه ، ولتاژ را افزایش می دهیم تا به مقدار 100% فوق برسد. سپس این ولتاژ را در حدو یک دقیقه بر روی مقره نگه می داریم. طی این آزمایش هیچ گونه جرقه سطحی یا سوراخ شدن مقره نباید اتفاق بیفتد. دراین آزمایش می توان افزایش ولتاژ را هنوز ادامه دهیم تا جرقه سطحی حاصل شود. این آزمایش را 5 بار تکرار می کنیم و مقدار متوسط ولتاژهای جرقه سطحی را به عنوان ولتاژ جرقه هوای مرطوب در ولتاژ سینوسی با فرکانس های صنعتی تعیین کنیم. فرکانس موج سینوسی باید بین 15kv تا 100kv باشد. هر واحد مقره ، نام تولید کننده و سال تولید آن نوشته می شود. همچنین حداکثر قدرت مکانیکی مقره نیز بر روی آن نوشته می شود. مثلاً U300 مقره 300 کیلونیوتنی است. شرایط استاندارد به صورت T = 20°c وP = 760mmHy رطوبت 119 water/m3 = است. قبل از پرداختن به آزمایش هایی که بر روی مقره های نمونه انجام می گیرد ، ساختمان مقره ها را بیان می کنیم ، که به دو دسته تقسیم می شوند : 1. نوع A : مقره هایی که طول یا ضخامت کوتاهترین مسیر موجود در داخل آن ها برای سوراخ شدن داخل بدنه مقره حداقل برابر با نصف طول کوتاهترین مسیر جرقه در هوای روی سطح مقره است. 2. نوع B : مقره هایی که ضخامت داخل آن ها برای مسیر سوراخ شدن مقره کمتر از نصف طول کوتاهترین مسیر جرقه بر روی سطح مقره در هوا است. آزمایش های روی مقره های نمونه طبق استاندارد (Sample Test IEC ) برای یک محموله ای از مقره های یک نوع با مشخصات یکسان از همه نظر که به وسیله خریدار از تولید کننده مقره خریداری می شود. تعدادی مقره به صورت کاملاً اتفاقی و تصادفی از بین محموله آماده انتخاب می شود و تعدادی آزمایش روی نمونه های انتخابی انجام می شود. در صورتی که نتایج آزمایش ها مثبت باشند ، کیفیت محصول آن ها از طرف خریدار تأیید می شود. تعداد نمونه های انتخابی بر اساس استاندارد IEC به صورت زیر است: با فرضP تعداد مقره های انتخابی به عنوان نمونه و N تعداد کل مقره ها باشد ، آنگاه : 1) اگر N < 500 باشد ، P با توافق طرفین تعیین می شود. 2) اگر 500 < N < 2000 باشد (P = 4 + (1/5N ÷ 1000 است. 3) اگر N > 20000 باشد ، P = 14 + ( 0/75N ÷ 1000) است. آزمایش هایی که بر روی مقره های نمونه انتخاب شده انجام می گیرند ، عبارتند از : 1- بررسی سیستم قفل و بست. 2- کنترل مقدار وزن مقره ها و ابعاد قسمت های مختلف آن ها. 3- آزمایش سیکل حرارتی. 4- آزمایش حداکثر تحمل بار الکترومکانیکی (فقط روی مقره های شیشه ای). 5- آزمایش حداکثر تحمل بار مکانیکی. 6- آزمایش شوک حرارتی (فقط برای مقره های شیشه ای). 7- آزمایش تحمل ولتاژ در برابر سوراخ شدن (فقط برای مقره های نوع B). 8- آزمایش تخلخل (وجود حفره) (فقط برای مقره های چینی). 9- آزمایش میزان گالوانیزه بودن قسمت های فلزی مقره. مقره های نمونه انتخاب شده را طبق استاندارد IEC به دو گروه تقسیم می کنند : گره اول شامل دو سوم تعداد مقره های انتخاب شده و گروه دوم شامل یک سوم تعداد مقره های انتخاب شده است. بر اساس نوع A یا B مقره ها و نوع بشقابی یا اتکایی ، آزمایش های نمونه فوق تعدادی بر روی گروه اول و تعدادی بر روی هر دو گروه انجام می شود. مقره هایی که بر روی آن ها آزمایش های نمونه صورت می گیرد نباید در سرویس از آن ها استفاده شود. شرح آزمایش 1- بررسی سیستم قفل و بست : در این جا چند آزمایش مختلف برای اطمینان از مکانیزم قفل و بست انجام می گیرد : الف) با اتصال بشقاب ها به همدیگر و تشکیل یک یا چند زنجیره ، خرکت های افقی شبیه به حرکت هایی که در حالت سرویس ممکن است پیدا شود به آن ها داده می شود که اتصال زنجیره ها باید باز شود. ب) اشپیل (Split – Pin) تمام بشقاب ها در موقعیت قفل قرار داده می شود و به وسیله یک دستگاه که نیروی کششی وارد می کنند بار کششی برای حرکت کردن اشپیل هر بشقاب اعمال می شود. برای هر بشقاب این عمل 3 بار تکرار می شود. مقدار این نیرو طبق استاندارد ، بین 50 تا 500 نیوتن بایستی اعمال شود. ج) هشپیل هر مقره یا نیروی کششی حداکثر یعنی 500N کشیده می شود (به وسیله دستگاه کشنده). اشپیل ها در اثر این نیرو نباید از محل قفل به طور کامل خارج شوند. 2- کنترل ابعاد مقره (Verification Of Dimensions) : این کنترل ابعاد عبارتند از : الف) اندازه گیری وزن مقره های نمونه و متوسط گیری به عنوان وزن مقره. ب) اندازه گیری قطر خارجی مقره از بالاترین تا پایین ترین نقطه. ج) اندازه گیری ارتفاع مقره از بالاترین تا پایین ترین نقطه. د) اندازه گیری فاصله خزشی مقره ( Creep Age Distance ). ه) کنترل قطر حفره کلاهک و قطر پین فلزی مقره با اشل های استاندارد (اشل هایی که باید داخل حفره بروند یا از قطر پین بگذرند و اشل هایی که نباید بگذرند). 3- آزمایش سیکل حرارتی ( Temperature Cycle Test ) در این آزمایش یک مخزن آب سرد و یک مخزن آب گرم تهیه می شود. درجه حرارت مخزن آب گرم باید 70°c بیشتر از درجه حرارت مخزن آب سرد باشد و به وسیله یک سیستم اتوماتیک ، درجه حرارت مخزن ها ثابت نگه داشته شوند. مقره های نمونه به مدت T دقیقه در مخزن آب گرم قرار داده می شوند. Aمقره نوع T = 15 + 0/7 m , m = kgجرم مقره بر حسب Bمقره نوع T = 15 min بعد از طی زمان فوق ، سریعاً بدون هیچ تأخیری (حداکثر تأخیر 30 ثانیه) و برای مدت زمان T دقیقه نیز در مخزن آب سرد غوطه ور می شوند. این سیکل گرما و سرما 3 بار تکرار می شود. برای مقره های اتکایی به جاب مخزن آب سرد ، باید آن را بعد از خارج کردن از مخزن آب گرم (برای مدت 15 دقیقه در مخزن آب گرم قرار گرفته است) به مدت 15 دقیقه در معرض باران مصنوعی با شدت 3 میلیمتر بر دقیقه قرار می دهیم و این سیکل را 3 بار تکرار می کنیم. شرط پذیرش این آزمایش این است که در پایان هیچ یک از مقره های نمونه ترک خوردگی پیدا نکرده باشند. 4- آزمایش تحمل بار الکترومکانیکی ( Electromechanical Failing Load Test) در این آزمایش همزمان با اعمال ولتاژ با فرکانس صنعتی به مقره یک بار مکانیکی کششی نیز به مقره اعمال می شود تا اگر تخلیه الکتریکی داخلی در اثر تخلیه های داخل مقره اتفاق می افتد ، در اثر نیروی کششی اعمال شده به صورت عیب مکانیکی (مثلاً ترک خوردن مقره) مشخص می شود. ولتاژ اعمالی به مقره همان ولتاژ مقاوم با فرکانس صنعتی در هوای مرطوب است. چون در مقره های شیشه ای تخلیه های موضعی داخل مقره کاملاً پیدا است ، لذا این آزمایش برای مقره های شیشه ای انجام نمی شود. 5- آزمایش تحمل حداکثر بار مکانیکی ( Mechanical Failing Load Test ) در این آزمایش مقره نمونه ، تک تک و به نوبت در داخل دستگاه مخصوص اعمال نیروی کششی قرارگرفته و نیروی کششی اعمالی به آن ها از صفر به طور سریع به مقدار 75% حداکثر تحمل بار مکانیکی نامی مقره افزایش داده می شود. سپس به آرامی در یک مدت زمان معین بین 15 تا 45 ثانیه بار کششی اعمالی را به 100% حداکثر بار مکانیکی می رسانیم. شدت این افزایش به مقدار 35% حداکثر بار مکانیکی نامی در هر دقیقه می باشد. در این آزمایش مقره باید بتواند بار مکانیکی کششی اعمال شده را تحمل کند و دچار شکست مکانیکی لازم برای شکست مقره دست یابیم. لازم به ذکر است که برای مقره های اتکایی (سوزنی) بار مکانیکی خمشی به جای کشش اعمال می شود. 6- آزمایش شوک حرارتی (فقط برای مقره های شیشه ای) در این آزمایش یک مخزن آب که درجه حرارت کمتر از c°50 را دارد ، مهیا می شود. سپس مقره های نمونه را در داخل یک کوره هوای گرم که درجه حرارت آن حداقل °c100 بالاتر از درجه حرارت مخزن آب است ، 20 دقیقه قرار می دهند. سپس مقره ها را به طور ناگهانی وارد مخزن آب می نمایند و حداقل 2 دقیقه در مخزن با آب نگه می دارند. مقره ها نباید دچار ترک یا شکستگی شوند. 7- آزمایش تحمل ولتاژ در برابر سوراخ شدن مقره ( Pun Chore Tesr ) این آزمایش می تواند با یک موج ولتاژ سینوسی با فرکانس صنعتی و یا با یک موج ضربه ای انجام گیرد. البته معمولاً با فرکانس صنعتی انجام می شود. مقره های نمونه در این آزمایش کاملاً خشک و تمیز می شوند و در داخل یک محفظه روغن شناور می شوند. که روغن باید عاری از رطوبت و ناخالصی باشد و استقامت الکتریکی بالایی داشته باشد. اگر محفظه روغن فلزی باشد باید ابعاد آن خیلی بزرگ باشد که جرقه بین قسمت فلزی مقره و بدنه محفظه روغن زده نشود. ولتاژ با فرکانس صنعتی بین قسمت های فلزی مقره اعمال می شود. همچنین روغن برای این استفاده می شود که استقامت الکتریکی خیلی بالاتری نسبت به هوا دارد و از بروز جرقه سطحی روی مقره در اثر اعمال ولتاژ بالا جلوگیری می کند. برای آزمایش ، ولتاژ اعمالی را سریعاً به مقدار حداکثر ولتاژ نامی قابل تحمل مقره می رسانیم که در استانداردها مشخص شده است که بر اثر این ولتاژ نباید در مقره شکست الکتریکی و سوراخ شدن به وجود آید. اگر میزان استقامت مقره مورد نظر باشد بایستی ولتاژ را آنقدر افزایش داد تا مقره سوراخ شود. 8- آزمایش تخلخل (فقط برای مقره های چینی) Poorsity Test در این آزمایش قطعات شکسته شده یک مقره چینی در یک محلول الکل یک درصد که مقداری جوهر قرمز نیز به آن اضافه شده (یک گرم جوهر قرمز درصد گرم الکل) و تحت فشار 15 مگانیوتن بر متر مربع برای چندین ساعت (حدود 24 ساعت) قرار داده می شود. سپس قطعات بیرون آورده شده و تمیز و خشک می شوند و دوباره شکسته شده و به قطعات کوچکتری تبدیل می شوند. در سطوح شکسته شده نباید هیچ اثری از نفوذ الکل مشاهده شود. این آزمایش برای لعاب (glaze) مقره است (برای اطمینان از عدم وجود ترک های مویین در لعاب مقره) لذا می توان مقره را پس از آزمایش وزن کرد و سپس برای 24 ساعت در آب تحت فشار قرار داده و سپس مجدداً وزن نمود. اگر افزایش وزن داشته باشیم نشان دهنده نفوذ آب در خلل و فرج مقره است. 9- آزمایش میزان گالوانیزاسیون قسمت های فلزی (Galvanizing Test) در این آزمایش اولاً وضعیت ظاهری پوشش سطحی روی قسمت های فلزی مقره های نمونه از نظر یکنواختی و هموار بودن بررسی می گردد. همچنین به وسیله یک دستگاه مخصوص جرم فلز (روی) بر روی سطوح فلزی در واحد تعیین می گردد. دستگاه مخصوص فوق ، ضخامت فلز روی را می تواند در یک نقطه هم اندازه گیری کند. برای این منظور 10 نقطه به طور تصادفی بر روی کلاهک و 10 نقطه بر روی پین انتخاب می شوند. سپس با داشتن جرم حجمی روی ، مقدار جرم فلز روی در واحد سطح مشخص می شود. در هر مقره نمونه ، جرم روی در واحد سطح نباید کمتر از 500 گرم بر متر مربع باشد و برای تمام نمونه ها به طور متوسط از مقدار 600 گرم برکتر مربع نباید کمتر باشد. تست های معمول مقره ها (Routine Test) این آزمایش ها به تک تک مقره ها در خط تولید اعمال می شود که شامل آزمایش های زیر هستند : 1- بررسی وضعیت ضاهری مقره ها از نظر شکل و ابعاد و رنگ ظاهری آن ها. 2- آزمایش های مکانیکی : برای مقره های نوع A: یک زنجیره از مقره ها به مدت یک دقیقه تحت یک بار کششی معادل 60% حداکثر تحمل بار مکانیکی قرار می گیرند. برای مقره های نوع B: یک زنجیره از مقره ها برای مدت 10 ثانیه تحت یک بار کششی معادل 40% حداکثر تحمل بار مکانیکی قرار می گیرند. مقره هایی که در این آزمایش دچار شکست و ترک خوردگی شوند از خط تولید خارج می شوند. 3- آزمایش الکتریکی : مقره های بشقابی یا مقره های اتکایی (سوزنی) در این آزمایش به آنها یک ولتاژ سینوسی با فرکانس صنعتی اعمال می شود. دامنه ولتاژ باید به حدی باشد که هر چند ثانیه یک بار جرقه سطحی روی مقره زده می شود. زمان اعمال ولتاژ باید حداقل 5 دقیقه باشد. اگر مقره ها دچار سوراخ شدگی شوند از خط تولید خارج می شوند.